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Capabilities of new fsec laser/electron accelerator system

1 kHz, 2.5 mJ
amplified Ti:S
laser system

800 nm
2nd/3rd HG
400 nm/266 nm
35 fsec 5 MeV >
800 nm electron pulse
OPA -
300-2600 nm
0.2-5 THz >
generation

- generation of excitons and/or charges
- electro-optical THz detection
- time-gated fluorescence upconversion

- generation of excitons and/or charges

- generation of free charge carriers

- time-resolved optical absorption

- time-resolved complex conductivity
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Ultrafast laser/electron pulse facility in Delft, The Netherlands
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800 nm

UV: 266 nm Probe delay for THz
250 w/pulse 35 fs THZ SEt- u p waveform detection.
1kHz E(t) or AE(t)
Chopper 7‘ } «—
AE(®) or E(t)) _L_ // / R‘
I 5 _m \\\ beam
EOS-ZnTe
0-2 THz probe 800 nm EOS
probe for THz
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Pump-probe * Chopping the THz pump beam: E(t).
delay » Chopping the UV beam:changes in the THz field: AE(t).
* Varying the time delay between the THz UV pump: Dynamics
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Materials with (potential) opto-electronic applications
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conducting polymers discotic liquid crystals inorganic nanoparticles, nanorods
composite systems
supra-molecular DNA
assemblies
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Organic materials in opto-electronic devices

Light-emitting diode Solar cell

organic layer organic layer

light

.
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Fundamental knowledge needed for improved device perfomance

« factors governing motion of charges and excitons

« efficiency of charge recombination

 decay channels of excitons: fluorescence, dissociation, annihilation
« quantum yield for photogeneration of charges

charges excitons
intrachain
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Study of ultrafast processes
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electron-hole distance ~30 nm
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Electron versus laser pulses

Formation of charges

5 MeV electron x charges:

pulses W < _ e concentration on psec timescale known
_W\ o G e absolute values of extinction coefficient
Detection and THz mobility

optical or THz pulses e e decay mechanism and kinetics

Formation of excitons
and/or charges

laser pulses —MWA—3p| * & @ | EXCitons and charges
e quantum yield @
_w 4 o e exciton properties and dynamics
Detection (+tF7 1-0

optical or THz pulses
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conjugated polymers
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polydiacetylene polythiophene poly(p-phenylene)(PPP)  poly(p-phenylene vmylene) (PPV)
o~k ooy OO
poly(thienylene vinylene) (PTV) polyfluorene ladder-type PPP

Effects of: backbone, substituents, defects, temperature, morphology (dilute
solution, thin films, bulk) spin-coating, annealing....
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Photogeneration efficiency of charges in MEH-PPV

THz probe 400 nm
excitation
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< delay

MEH-PPV thin film

1 THz = 1012 Hz = 4 meV E+

4 excited states/ charges

2.5 eV
3 eV
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Time resolved information
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Frequency resolved information at 'short’' times

400~

= 1 =0.5Dps Real and imaginary parts to conductivity: Free charges
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S Increase with frequency due to torsional disorder

S o | as predicted by theory for infinite static PPV chains

'8 O Imaginary
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Frequency (THZ)

lower limit to w(30 GHz)=10-3 cm?V-1s!: Free charge generation < 1%

Hendry et al., Phys. Rev. Lett. 92, 196601, 1-4, (2004)
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Frequency resolved information at 'long' times

T =10 ps

Real

Imaginary
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Frequency (THZ)
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Mainly imaginary conductivity;

temporary displacement of bound charges: Excitons

Clausius-Mossoti  o=—1 wn gydescribes
linear increase with frequency
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discotic liquid crystalline materials
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composite systems

bilayer heterogeneous blend

antenna

semiconductor 3
N S1

1: photo-excitation

2: (non)radiative decay

1 3: exciton diffusion and annihilation
4: interfacial electron transfer

5: interfacial charge recombination
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Conclusion

o Laser system is expected to be operational early 2005

e Electron pulses available 2005/2006

 New facility will help to unravel the nature and dynamics of
excitons and charge carriers in functional materials
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DNA

How mobile are charges in DNA?
e oxidative damage to DNA (mutations)
e DNA as a molecular wire

Ionization (~ 6 eV needed) with high-energy electron pulse.

Monitoring of charges by optical absorption and THz conductivity.
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Holy Grail

To make an important contribution to the upcoming era of molecular
electronics.

To be able to predict the properties of charge carriers and excitons in
(not yet existing) materials.
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laser driven electron accelerator

TUE-Pulser
Cu photocathode
3 GHz, 100 MV/m
cavity l Laser pulse
50 fs, 100 pJ,
l 260 nm
Microbunch
Goal:100 pC, 100 fs,
10 MeV
HV pulser Coaxial incoupling
25MV, I ns 10 MW RF
BROOKHFEVEN

NATIONAL LABORATORY

: FEL 2002, ANL, Chicago
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Motivation

Towards novel electronics based on organic molecular materials
(instead of e.g. Si) as active component in opto-electronic devices.

Advantages include:
- flexible

- easy to process

- tunable properties
- light weight

- cheap
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Clausius-Mossoti o=—iwngye

The product of the exciton density (n7) and the polarizabiliy (o) determine the
imaginary conductivity (o) .

Literature: o = 800—-3000 1&3 (Gelinck et al. Phys Rev B 62, 1489 (2000))

This gives an exciton density corrsponding to a photogeneration quantum
yield between 0.3 and 1.

Since few charges are generated o ~ 800 1&3
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Theoretical support

e electronic structure calculations (HF, DFT etc.)
e quantum mechanical calcs. on charge and exciton motion
e Monte Carlo simulations of hopping transport
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